Filaria papers made possible by the FR3. (Number of times cited)

Current as of April 2011.

Animal Model/Culture

Diagnosis/Treatment

Rajan TV. 2004. Relationship of anti-microbial activity of tetracyclines to their ability to block the L3 to L4 molt of the human filarial parasite *Brugia malayi*. American journal of tropical medicine and hygiene. 71:24-28. (19)

Cameron ML, Levy P, Nutman T, Vanamala CR, Narayanan PR, Rajan TV. 1988. Use of restriction fragment length polymorphisms (RFLPs) to distinguish between nematodes of pathogenic significance. Parasitology. 96:381-390. (9)

Erickson SM, Fischer K, Weil GJ, Christensen BM, Fischer PU. 2009. Distribution of *Brugia malayi* larvae and DNA in vector and non-vector mosquitoes: implications for molecular diagnostics. Parasites and vectors. 2:56. (0)

Cho-Ngwa F, Zhu X, Metuge JA, Daggfeldt A, Grönvlk KO, Orlando R, Atwood JA, Titanjl. Identification of in vivo released products of *Onchocerca* with diagnostic potential, and characterization of a dominant member, the OV1CF intermediate filament. Infection, genetics and evolution. Article in press. (0)

Bourguinat C, Keller K, Blagburn B, Schenker R, Geary TG, Prichard RK. Correlation between loss of efficacy of macrocyclic lactone heartworm anthelmintics and P-glycoprotein genotype. Veterinary parasitology. Article in press. (0)

Immunology/Vaccine/Pathogenesis

Kazura JW, Davis RS. 1982. Soluble Brugia malayi microfilarial antigens protect mice against challenge by an antibody-dependent mechanism. The journal of immunology. 128:1792-1796. (42)

Semnani RT, Liu AY, Sabzevari H, Kubofcik J, Zhou J, Gilden JK, Nutman TB. 2003. Brugia malayi microfilariae induce cell death in human dendritic cells, inhibith their ability to make IL-
12 and IL-10, and reduce their capacity to activate CD4+ T cells. The Journal of Immunology. 171:1950-1960. (37)

Babu S, Blauvelt CP, Nutman TB. 2007. Filarial Parasites Induce NK Cell Activation, Type 1 and Type 2 Cytokine Secretion, and Subsequent Apoptotic Cell Death. 179:2445-2456. (14)

Giambartolomei GH, Lasater BL, Villinger F, Dennis VA. 1998. Diminished production of T helper 1 cytokines and lack of induction of IL-2R+ T cells correlate with T-cell unresponsiveness in rhesus monkeys chronically infected with Brugia malayi. Experimental parasitology. 90:77-85. (7)

Preexposure to live Brugia malayi microfilariae alters the innate response of human dendritic cells to Mycobacterium tuberculosis. 193:196-204. (6)

Induction of TRAIL- and TNF-Dependent Apoptosis in Human Monocyte-Derived Dendritic Cells by Microfilariae of Brugia malayi. 181:7081-7089. (6)

Modulation of lymphocyte activation by soluble Brugia pahangi extracts. Tropical medicine and parasitology. 40:327-331. (5)

Immunoregulation in experimental filariasis. IV. Induction of non-specific suppression following in vitro exposure of spleen cells from infected jirds to Brugia pahangi antigen. Immunology. 52:221-229. (5)

Regulation of jird lymphocyte responsiveness to fractionated antigens of Brugia pahangi. Tropical medicine and parasitology. 39:317-321. (4)

Reciprocal Immunomodulatory Effects of Gamma Interferon and Interleukin-4 on Filaria-Induced Airway Hyperresponsiveness. 69:1463-1468. (4)

Immunoresponse in experimental filariasis. I. In vitro Suppression of Mitogen-Induced Blastogenesis by Adherent Cells from Jirds Chronically Infected with Brugia pahangi. Journal of immunology. 130:1381-1385. (3)

Using structural analysis to generate parasite-selective monoclonal antibodies. Protein science. 17:983-989. (2)

Cloning and characterization of a novel immunogenic protein 3 (NIP3) from Brugia malayi by immuno screening of a phage-display cDNA expression library. Parasitology research. 97:49-58. (2)

Immunoprophylactic studies with a 43 kDa human circulating filarial antigen and a cross reactive 120 kDa Brugia

Shenoy RK, Rakesh PG, Baldwin CI, DA. 1996. The sheath of the microfilaria of *Brugia malayi* from human infections has IgG on its surface. Parasitology Research. 82:382-384.

Patel A, Chojnowski AN, Gaskill K, De Martini W, Goldberg RL, Siekierka JJ. 2010. The role of a *Brugia malayi* p38 MAP kinase ortholog (Bm-MPK1) in parasite anti-oxidative stress responses. Molecular and Biochemical Parasitology. Article in print.

Kalyanasundaram R, Balumuri P. 2011. Multivalent vaccine formulation with BmVAL-1 and BmALT-2 confer significant protection against challenge infections with *Brugia malayi* in mice and jirds. Research and reports in tropical medicine. 2:45-56. (0)

Molecular

Kadipasaoglu AK, Bilge FH. 1989. Partial characterization of the adsorbed protein layer on *Dirofilaria immitis* (Nematoda) cuticle. Parasitology research. 75:554-558. (5)

Guenette S, Prichard RK, Matlashewski G. 1992. Identification of a novel *Brugia pahangi* ß-tubulin gene (ß2) and a 22-nucleotide spliced leader sequence on ß1-tubulin mRNA. Molecular and biochemical parasitology. 50:275-284. (2)

Ardelli BF, Stitt LE, Tompkins JB. 2010. Inventory and analysis of ATP-binding cassette (ABC) systems in *Brugia malayi*. Parasitology. 137: 1195-1212. (1)

Williams SA. 2004. 3.3 Filarial Genomics. American Journal of Tropical Medicine and Hygiene. 71:37-40. (0)

Bourguinat C, Keller K, Prichard RK, Geary TG. Genetic polymorphism in *Dirofilaria immitis*. Veterinary parasitology. Article in press. (0)

Bailey M, Chauhan C, Liu Cand, Unnasch TR. 2011. The role of polymorphisms in the spliced leader addition domain in determining promoter activity in *Brugia malayi*. Molecular and Biochemical Parasitology. 176:37-41. (0)

Other

Vector Biology

difference in immune activation in the mosquitoes Armigeres subalbatus and Aedes aegypti.
Journal of parasitology. 75:76-81. (32)

Li J, Tracy JW, Christensen BM. 1992. Phenol oxidase activity in hemolymph compartments of
Aedes aegypti during melanotic encapsulation reactions against micorfilariae. Developmental
and comparative immunology. 16:41-48. (29)

Beerntsen BT, Severson DW, Klinkhammer JA, Kassner VA, Christensen BM. 1995. Aedes
aegypti: A Quantitative Trait Locus (QTL) Influencing Filarial Worm Intensity Is Linked to
QTL for Susceptibility to Other Mosquito-Borne Pathogens. Experimental parasitology. 81:355-
362. (28)

Beerntsen BT, Severson DW, Christensen BM. 1994. Aedes aegypti: characterization of a
hemolymph polypeptide expressed during melanotic encapsulation of filarial worms.
Experimental parasitology. 79:312-321. (25)

Wattam AR, Christensen BM. 1992. Induced polypeptides associated with filarial worm
refractoriness in Aedes aegypti. Proceedings of the national academy of sciences of the United
States of America. 89:6502-6505. (25)

Mosquito innate immunity: involvement of beta 1,3-glucan recognition protein in melanotic
encapsulation immune responses in Armigeres subalbatus. Molecular and Biochemical
Parasitology. 139:65-73. (24)

Infanger LC, Rocheleau TA, Bartholomay LC, Johnson JK, Fuchs N, Higgs S, Chen CC,
Christensen BM. 2004. The role of phenylalanine hydroxylase in melanotic encapsulation of
filarial worms in two species of mosquitoes. Insect biochemistry and molecular biology.
34:1329-1338. (21)

Persistence of Brugia malayi DNA in vector and non-vector mosquitoes: implications for
xenomonitoring and transmission monitoring of lymphatic filariasis. American journal of
tropical medicine and hygiene. 76:502-507. (15)

Ibrahim MS, Richie TL, Scott AL. 1992. Surface-associated antigens of Brugia malayi L2 and
L3 parasites during vector-stage development. Molecular and biochemical parasitology. 52:97-
110. (15)

Vaughan JA, Turell MJ. 1996. Dual host infections: enhanced infectivity of eastern equine
encephalitis virus to Aedes mosquitoes mediated by Brugia microfilariae. American journal of
tropical medicine and hygiene. 54:105-109. (13)

Guo X, Beerntsen BT, Zhao X, Christensen BM. 1995. Hemocyte alterations during melanotic
81:200-207. (12)

Aliota MT, Fuchs JF, Mayhew GF, Chen CC, Christensen BM. 2007. Mosquito transcriptome changes and filarial worm resistance in Armegeres subalbatus. BMC genomics. 8:463. (9)

Beckett EB. 1990. Species variation in mosquito flight-muscle damage resulting from a single filarial infection and its repercussions on a second infection. Parasitology research. 76:606-609. (4)

Aliota MT, Chen CC, Dagoro H, Fuchs JF, Christensen BM. 2011. Filarial worms reduce plasmodium infectivity in mosquitoes. PLoS Neglected tropical diseases. 5:e963. (0)